
A relation between billiard geometry and the temperature of its eigenvalue gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 129

(http://iopscience.iop.org/0305-4470/30/1/010)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 129–141. Printed in the UK PII: S0305-4470(97)71191-0
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Abstract. According to a conjecture of Yukawa the parametric motion of the eigenvalues of
a chaotic system leads to a phase-space distribution proportional to exp(−βE) whereE is the
energy of the eigenvalue gas andβ is its reciprocal temperature. To test the conjecture, in a
first-step correspondence between the well known Pechukas–Yukawa level dynamics and that
of a billiard with variable length is established. Next,β is expressed in terms of the billiard
geometry thus fixing the only free parameter of the model. Finally, experimental distributions
of eigenvalue velocities, curvatures etc, obtained from Sinai microwave billiards are analysed
in terms of the model. In all cases a quantitative agreement was found, apart from some small
deviations caused by the dominating bouncing-ball orbit.

1. Introduction

There is a close analogy between the level dynamics of a quantum system under the
change of a parameter and the classical dynamics of a one-dimensional gas with a repulsive
interaction potential. In this picture the eigenenergies take the role of the positions of
particles and the parameter that of a timet . Pechukas [1] proposed a Hamiltonian with a
linear parameter dependence,

H(t) = H0 + V t (1)

and derived a dynamic equation system with eigenenergiesxn and matrix elementsVnm

as dynamical variables. The ideas of Pechukas were developed further by Yukawa [2]
who introduced eigenenergiesxn, their velocitiesẋn = Vnn, and the interaction strengths
fnm = |xn − xm|Vnm as variables, where the flow in phase space disappears under steady-
state conditions. Yukawa conjectured that in analogy to statistical mechanics the stationary
phase-space distribution should be given by

ρ ∼ exp

(
−

∑
i

βiCi

)
(2)

where the sum is over all constants of motionCi , andβi are the corresponding Lagrange
parameters. The only constants of motion depending linearly or quadratically onẋn and
fnm are [3] the total momentum

P =
∑

n

ẋn (3)

† Present adress: ITF, UvA, Valckenstraat 65, 1018 XE Amsterdam, the Netherlands.
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the total energy

E0 = 1

2

∑
n

ẋ2
n + 1

2

∑
n6=m

f 2
nm

(xn − xm)2
(4)

and a third one given by

Q = 1
2

∑
n6=m

f 2
nm.

After transformation into the centre-of-mass system (corresponding to an unfolding of
the spectra to a constant density of states)P vanishes. Alternatively one can take into
account the centre-of-mass velocity by replacing expression (4) for the total energy by

E = 1

2

∑
n

(ẋn − 〈ẋn〉)2 + 1

2

∑
n6=m

f 2
nm

(xn − xm)2
(5)

where the bracket denotes a local average. In the following this expression forE will be
used exclusively.

If higher powers ofẋn andfnm are considered, a large number of additional constants
of motion exists [4]. In fact it could be shown that the Pechukas–Yukawa equation
system is completely integrable [5]. Thus a microcanonical phase-space distribution
ρ ∝ ∏

i δ(Ci − ci0) should be more appropriate, where theci0 are the initial values for
the constants of motion. Nevertheless ansatz (2) proved to be successful to describe a
number of statistical properties of the spectra of chaotic systems correctly. First, for
the eigenenergy distribution function, random matrix results are recovered [2, 6]. But
also velocity distributions [7], asymptotic curvature distributions [8, 9], and the repulsion
behaviour at avoided crossings [10, 11] are explained. In all these works it showed up that
in chaotic systems just one constant of motion, namely the total energyE, is sufficient to
describe the phase-space density,

ρ ∼ exp(−βE). (6)

Thus one ends exactly at the Boltzmann ansatz of classical mechanics. Integrating
equation (6) over the variablesxn andfnm one gets a Gaussian velocity distribution

Pvel(ẋn) ∼ exp

(
− β

2

∑
n

(ẋn − 〈ẋn〉)2

)
. (7)

One sees immediately thatβ can be expressed in terms of the quadratically averaged
centre-of-mass velocities,

β−1 = 〈ẋ2
n〉 − 〈ẋn〉2. (8)

Provided that equation (6) really holds,β is the only free parameter in the model.
Instead of studying the distribution functions of the dynamical variables one can alternatively
concentrate on eigenvalue velocity autocorrelation functions [12]

C(t) =
〈
∂En(t̄)

∂ t̄

∂En(t̄ + t)

∂ t̄

〉
(9)

or related quantities such as correlation functions for matrix elements [13] or wavefunctions
[14]. In equation (9) the average is alternatively overt̄ , over the energy, or over different
disorder configurations. With the help of supersymmetry techniques a number of exact
results could be obtained here. In the present context the work of Simons and Altshuler [15]
is of special importance; they found Gaussian velocity distribution functions in disordered
systems with the strength of the magnetic flux or an external potential as the level-dynamics
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parameter. This can be considered as an independent support of ansatz (2). The universal
spectral correlations break down at energy scales of ¯h/Tmin, where Tmin is the period
of the shortest periodic orbit. At these scales periodic orbit theory has to be applied.
Here especially the work of Berry and Keating [16] has to be mentioned where velocity
autocorrelation functions are calculated, again with the magnetic flux as the level-dynamics
parameter.

It is the object of this paper to explore the range of validity of the Yukawa–Boltzmann
ansatz (2) with the help of experimentally obtained spectra of microwave billiards where the
level dynamics is induced by the change of one billiard length. The paper focuses on three
aspects. In section 2 the connection between Pechukas–Yukawa and billiard level dynamics
is studied. It isa priori not self evident that both dynamics are equivalent, as in the first
case the Hamiltonian is time-dependent and in the latter case it is the boundary condition.
The idea nearest at hand is to transform the time dependence from the boundary to the
Hamiltonian by means of conformal mapping. This, however, results in a nonlinear time
dependence suggesting that the Pechukas–Yukawa model is a good description of billiard
level dynamics only in the first order of time [7]. In this paper it is shown by a simple
application of Green’s theorem that in fact there is acompleteequivalence for the case
that one billiard length serves as a level-dynamics parameter. Section 3 contains the main
result of this paper. Here a quantitative generic relation betweenβ−1, the temperature
of the eigenvalue gas, and elementary geometric properties of the billiard is established.
This is obtained by a periodic orbit calculation sketched already in our earlier work [7].
It is essentially an application of ideas developed by Berry in his work on the spectral
rigidity [17] (similar techniques have been applied independently in [16, 18]). To the best
of our knowledge this is the first example whereβ−1, being usually considered as a free
parameter, has been fixed by system properties. This allows very thorough tests of the
Yukawa conjecture as now there is no free parameter left for adjusting the theory to the data.
In section 4 these ideas are tested with experimental results from a series of microwave Sinai
billiards of varying length. We studied the distributions of velocity, asymptotic curvature
and closed approach distance at avoided crossings, but alsofn,n−1 distributions which have
not been considered hitherto in the literature. In all cases a complete quantitative agreement
with the expected behaviour was found, apart from some small deviations caused by the
dominating bouncing-ball orbit.

2. On the equivalence of Pechukas–Yukawa and billiard level dynamics

To derive a relation between the change of a billiard shape and its level dynamics we start
with a billiard with arbitrary areaA and boundaryS. Its eigenvaluesxn and eigenfunctions
9n obey the Schr̈odinger equation

− 19n = xn9n (10)

with the Dirichlet boundary condition9n|S = 0. After distortion of the billiard to a new area
A1 and a new boundaryS1 eigenvalues and eigenfunctions change tox1

n and91
n , respectively,

where now the91
n obey the Dirichlet boundary condition onS1. The distortion may be

arbitrary with the only restriction that the old billard is completely covered by the new
one (it is always possible to obey this condition, if necessary after a proper blow-up of the
distorted billiard). Application of Green’s theorem now yields

(x1
n − xm)

∫
A

91
n9m dA =

∫
S

91
n(∇⊥9m) ds (11)
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where∇⊥ denotes the normal derivative, directed outwards. For the sake of simplicity we
assume for the moment that only one straight partL of the billiard is shifted whereas the
remaining part of the boundary remains fixed (this is exactly the situation encountered in
the experiment). Assuming without loss of generality that prior to the shift the movable
wall coincides with they-axis, and that a shift of1l is performed in the direction of the
positivex-axis, the right-hand side of equation (11) reads∫

L

91
n(0, y)

∂9m(0, y)

∂x
dy.

91
n(x, y) obeys the boundary condition91

n(1l, y) = 0. Expanding

91
n(0, y) = 91

n(1l, y) − 1l
∂91

n(1l, y)

∂x
+ O((1l)2)

= −1l
∂9n(0, y)

∂x
+ O((1l)2)

and performing the limit1l → 0 in equation (11), we find

ẋn = Vnn (12)

for n = m, and

(xn − xm)

∫
9̇n9m dA = Vnm (13)

for n 6= m. Here the dot means differentiation with respect tol, andVnm is given by

Vnm = −
∫

L

∂9n(0, y)

∂x

∂9m(0, y)

∂x
dy. (14)

It is easy to show that for the general case the latter expression has to be replaced by

Vnm = −
∫

S

(∇⊥9n)(∇⊥9m)f (s) ds (15)

wheref (s) is a function depending on the details of the shape variation. If none of the
walls moves inwards as was assumed in the beginning of this section thenf (s) > 0 holds
everywhere. Equation (12) shows that for this case all eigenvalue velocities are negative.
For theaveragedvelocities this follows immediately from Weyl’s law, for theindividual
velocities, however, it is by no means self-evident. An experimental demonstration of this
fact can be found, for example, in figure 1 of [7].

To obtain an equation of motion for theVnm, equation (15) is differentiated,

V̇nm = −
∫

S

{(∇⊥9̇n)(∇⊥9m) + (∇⊥9n)(∇⊥9̇m)}f (s) ds −
∫

S

(∇⊥9n)(∇⊥9m)ḟ (s) ds.

(16)

If f (s) is constant in time, the second term on the right-hand side vanishes. This holds
for the special case discussed above, where only one billiard wall is moved, and where
one length is taken as the level-dynamics parameter. The first term can be transformed by
applying the completeness relation to9̇n,

9̇n =
∑

l

( ∫
9̇n9l dA

)
9l

=
∑
l 6=n

Vnl

xn − xl

9l (17)
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where in the second step, equation (13) was used. Inserting expression (17) into
equation (16), one ends with

V̇nn = 2
∑
l 6=n

(Vnl)
2 1

xn − xl

(18)

for n = m and

V̇nm =
∑

l 6=n,m

VnlVlm

(
1

xn − xl

+ 1

xm − xl

)
− Vnm

Vnn − Vmm

xn − xm

(19)

for n 6= m. Equations (12), (18), and (19) are identical with the Pechukas–Yukawa equation
system [1, 2]. This holds under the only restriction applied that the second term on the
right-hand side of equation (16) vanishes.

As it was used in the derivation that the billiard area increases with time, the density
of states is not constant. This can be corrected by introducing defolded variablesx̄n = Axn

and V̄nm = AVnm, respectively. The Pechukas–Yukawa equations for the new variables
differ from the original ones by additional terms(Ȧ/A)x̄n, (Ȧ/A)V̄nn, and (Ȧ/A)V̄nm on
the right-hand sides of equations (12), (18), and (19), respectively. As a consequence the
total energyE (see equation (5)) is no longer a constant of motion but becomes proportional
to the billiard area. In the light of the analogy between the eigenvalues of a chaotic system
and a one-dimensional gas the increase of area corresponds to an adiabatic compression of
the eigenvalue gas.

3. The Lagrange parameterβ

The only parameter entering into the Yukawa conjecture (6) is the temperatureβ−1 =
〈(ẋn)

2〉 − (〈ẋn〉)2. It cannot be considered as afree parameter, however: as the billiard
boundary is the only quantity changed in the level dynamics, there must exist a relation
betweenβ−1 and geometrical properties of the billiard. To arrive at such a relation, we
start with the periodic orbit expansion for the density of statesρ(k) = ∑

m δ(k − km), but
with the wavenumberk as variable (which in the present context is more appropriate then
the energyx = k2) [19]:

ρ(k) = A

2π
k +

∑
p,n

ρpnlp cos
(
n

(
lpk − π

2
νp

))
(20)

where A is the area of the billiard,lp is the length of the primitive orbitp and νp its
corresponding Maslov index. The second sum is over all primitive periodic orbitsp and
its repetitionsn. As we are interested only in the asymptotic behaviour, only the leading
term was taken for the smooth partρ0(k) of ρ(k). The prefactorsρpn are independent ofk
for isolated orbits and can be expressed in terms of the monodromy matrix describing the
stability of orbit p. For the discussion of non-isolated orbits see e.g. [20].

Integration of equation (20) overk and subsequent differentiation with respect to the
level-dynamics parametert yields∑

m

k̇mδ(k − km) = − Ȧ

4π
k2 − k

∑
p,n

ρpnl̇p cos
(
n

(
lpk − π

2
νp

))
(21)

where it was assumed that thet dependence of the stability factorρpn is only weak and
can be neglected compared to that oflp. Combining equations (20) and (21) one obtains
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an expression for the velocity-weighted density of states

ρv(k) =
∑
m

(ẋm − 〈ẋm〉)δ(k − km)

= −2k2
√

A
∑
p,n

ρpn

d(lp/
√

A)

dt
cos

(
n

(
lpk − π

2
νp

))
(22)

where〈ẋn〉 = −Ȧ/A〈xn〉 is the local centre-of-mass velocity. For the further procedure it
is necessary to apply a Gaussian smearing of the delta functions,

δ(ε, k) = 1√
πε

exp

(
−

(
k

ε

)2)
. (23)

The resulting expressions for the smeared densities of statesρ(ε, k) andρv(ε, k) differ
from equations (20) and (22) by an additional factor exp(−(εlp/2)2) on the right-hand sides
ensuring convergence of the sums.

If ε is small compared to the mean distance between eigenvalues in thek-region in
question, one obtains for the squared density of states

ρ2(ε, k) =
∑

n

(δ(ε, k − kn))
2 = 1√

2πε
ρ

(
ε√
2
, k

)
(24)

and

ρ2
v (ε, k) = 1√

2πε
(〈(ẋn)

2〉 − (〈ẋn〉)2)ρ

(
ε√
2
, k

)
. (25)

Multiplying equations (24) and (25) by
√

2πε, inserting on the left-hand side the periodic
orbit expansions for the densities of states, and performing the limitε → 0 and a local
average overk, one finds

ρ0(k) = lim
ε→0

√
2πε

〈{ ∑
p,n

ρpnlp cos
[
n

(
lpk − π

2
νp

)]
exp

(
−

(
εlp

2

)2)}2〉
(26)

and

(〈(ẋn)
2〉 − (〈ẋn〉)2)ρ0(k) = 4〈xn〉2A

× lim
ε→0

√
2πε

〈{∑
p,n

ρpn

d(lp/
√

A)

dt
cos

[
n

(
lpk − π

2
ρp

)]
exp

(
−

(
εlp

2

)2 )}2〉
.

(27)

Equation (26) establishes a relation between the smooth part of the density of states
and the oscillating one. A similar relation was already derived by Berry in his work on
the spectral rigidity, but with a Lorentzian smearing of the deltafunctions [17]. The Gauss
functions on the right-hand sides of equations (26) and (27) lead to a cut-off of the sums
at lengths of the order ofε−1. Thus in the limit ε → 0 the very long orbits give the
dominating contributions to the sums on the right-hand sides of equations (26) and (27).
One can therefore replacelp and l̇p by Np〈l〉 and Np〈l̇〉, respectively, whereNp is the
number of segments making up the orbit, and〈l〉 is the average length of a segment. These
averages differ from orbit to orbit, but the deviations from the global average over all orbits
decrease withN−1/2

p (assuming that the very long orbits are distributed uniformly in phase
space).
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Dividing equation (27) by equation (26), the lattice sums cancel out, and one is left
with

〈ẋ2
n〉 − 〈ẋn〉2 =

(
2
〈l̇〉
〈l〉 − Ȧ

A

)2

〈xn〉2. (28)

As the step from equations (26) and (27) to equation (28) is crucial, two remarks may
be appropriate [21]. First, it isnot possible to argue from the exponential increase of
the number of periodic orbits with length that the long orbits dominate the sums. This
increase is cancelled by a corresponding decrease of the weight factors, as is discussed in
[18]. Second, it isnot necessary to apply the diagonal approximation to the double sums.
Therefore the restriction ofε to values larger than the reciprocal Heisenberg time can be
dropped [17, 18]. The result can still be further simplified by using that in ergodic billiards
for every sufficiently long orbit the average segment length〈l〉 is given by [22]

〈l〉 = π
A

S
(29)

whereA is the billiard area andS its circumference. This relation holds also for non-ergodic
billiards, but here no self-averaging takes place, and one has to average over all orbits to
get the correct result. One ends thus at√

〈ẋ2
n〉 − 〈ẋn〉2 = β−1/2 =

∣∣∣∣ ȦA − 2
Ṡ

S

∣∣∣∣ 〈xn〉 (30)

expressing the quadratically averaged velocity in terms of billiard area and circumference
alone. Equation (30) shows further that this average increases linearly with〈xn〉. To
make the level dynamic homogeneous it is thus necessary to introduce rescaled variables
ˆ̇xn = ẋn/〈xn〉, f̂nm = fnm/〈xn〉 etc. For the new variables the Yukawa relation reads

ρ ∝ exp(−β̂Ê) (31)

where

β̂−1 = 〈ẋ2
n〉 − 〈ẋn〉2

〈xn〉2
=

∣∣∣∣ ȦA − 2
Ṡ

S

∣∣∣∣2

(32)

and whereÊ is obtained from equation (5) by replacing all variables by the corresponding
rescaled ones. Equations (31) and (32) are used in the next section for the comparison of
the experimental results with the theoretical predictions.

The final results no longer contain any ingredients from periodic orbit theory because
of the complete cancellation of the sums in equations (26) and (27). One may suspect
that a more direct way to arrive at equation (32) exists without making use of periodic
orbit theory. A possible starting point is equation (15) from which one obtains, for the
quadratically averaged velocities,

〈(ẋn)
2〉 =

∫
S

∫
S ′
〈[∇⊥9n(s)∇⊥9n(s

′)]2〉f (s)f (s ′) ds ds ′ (33)

where the bracket again denotes a local average. Recently similar averages have been
calculated in disordered systems [23, 24]. We have not been able, however, to derive
equation (32) in this way.
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Figure 1. Spectra of the quartered Sinai billiards with
a = 354. . . 359 mm,b = 237 mm,r = 70 mm in three
different energy regions. The spectra were unfolded to a
constant density of states of 1 using the Weyl formula (see
equation (34)).

4. Experimental tests of the Yukawa conjecture

In the preceeding section we succeeded in establishing a relation between the Lagrange
parameterβ̂ and elementary geometric billiard properties. This allows tests of the Yukawa
conjecture (31) with no adjustable parameter left in the model. To this end we measured the
spectra of a number of microwave billiards shaped as quartered Sinai billiards with fixed
short sideb, fixed radius of the quarter circler, and varying long sidea taking the role
of the time. To get an impression of the observed level dynamics, figure 1 shows typical
spectra in three different energy ranges. All spectra were unfolded to a mean density of
states of one using the leading terms of the Weyl formula

ρWeyl(x) = A

4π
− S

4π
√

x
(34)

which corresponds to a transformation into the centre-of-mass velocity.
The figure clearly exhibits the increasing violence of the level dynamics with energy.

It illustrates also the limitations of the experimental approach. Eigenvalues eventually
disappear and reappear again while changing the length. This happens whenever a node
line passes the position of the coupling antenna. Furthermore, eigenvalues are lost close to
avoided crossings as soon as the distance becomes smaller than the experimental resolution
of some MHz. If the missing levels are completed, the resulting integrated density of states
agrees up to about 0.5% with the values obtained from the Weyl formula (34). As it is
not possible, however, to reconstruct the exact positions of the missing levels, only the
resonances really seen in the experiment are considered in the following.
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The distributions and histograms to be presented now are obtained from spectra of
quartered Sinai billiards withr = 70 mm,b = 200 mm, anda varying between 460 and
480 mm. The applied step width varied with frequency and was 1 mm between 0 and
8 GHz, 0.5 mm between 8 and 12 GHz and 0.2 mm between 12 and 15 GHz. Altogether
some 600 eigenvalues were registered in an individual spectrum amounting to a total of
about 12 000 eigenvalues considered. For the corresponding Lagrange parameter one gets
from equation (32)

β̂ =
∣∣∣∣ ȦA − 2

Ṡ

S

∣∣∣∣−2

=
∣∣∣∣ b

ab − π
4 r2

− 4

2a + 2b − (2 − π
2 )r

∣∣∣∣−2

= 1.434m2 (35)

where fora an average value of 470 mm was taken. Due to the change ofa, β̂ varies by
±2% about its average value. In the analysis of the data two alternatives were pursued.
First, for all distributions to be discussed below the theoretical curves were calculated
taking β̂ from equation (35). The resulting curves are shown in figures 2–6 as full curves.
Then the theoretical curves were fitted to the data consideringβ̂ as a free parameter. The
corresponding curves are shown as broken curves in the figures, and the resultingβ̂ values,
including their standard deviations, are compiled in table 1.

Figure 2 shows the eigenvalue velocities, averaged quadratically over 20 neighbouring
eigenvalues, as a function of energy. One observes the linear increase predicted by
equation (30) but superimposed by oscillations which are caused by the bouncing-ball orbit
parallel to the short side of the billiard (for more details see [7, 25]). For the slope of
the linear increase a value of̂β−1/2 = 0.835 m−1 is expected. The straight line shown in
figure 2 corresponds to this theoretical prediction, the broken line has been obtained from
the fit. A similar good agreement between experiment and theory was obtained for the
level-dynamics measurements shown in figure 1.

Figure 2. Eigenvalue velocities, quadratically averaged
over 20 neighbours, in a quartered Sinai billiard
(for geometrical dimensions see text). The slope of
the straight full line corresponds to the theoretical
prediction from equation (35), the broken line represents
the best fit. The oscillations are due to the dominating
bouncing-ball orbit.

Figure 3. Distribution of the rescaled velocities. The
full curve corresponds to the theoretical predictions
from equation (36), the broken curve results from a fit.
The deviations in the wings are caused by the bouncing
ball parallel to the short side of the billiard. The regions
with |v̂| > 1.5 m−1 were omitted in the fit.
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Figure 4. Distribution of the rescaled curvatures,
theoretical prediction from equation (37) (full curve),
and fit with β̂ as a free parameter (broken curve).

Figure 5. Distribution of the closest approach distances
of neighboured eigenvalues at avoided crossings, the
theoretical prediction from equation (38) (full curve),
and a fit with the width as a free parameter (broken
curve).

Figure 6. Distribution of the rescaled nearest-neighbour
interaction strengths, theoretical prediction from equation (41)
(full curve) and fit withβ̂ as a free parameter (broken curve).

Table 1. Values for β̂, corresponding to the reciprocal temperature of the eigenvalue gas, as
obtained from theory and from fits to the different experimental distribution functions. The
given errors correspond to one standard deviation. In the case of the theoretical value the given
error denotes the range passed byβ̂ in changing the billiard length from 460 to 480 mm.

β̂ m−2

Theory (equation (35)) 1.434(30)
Eigenvalue velocities (equation (30) and figure 2) 1.46(6)
Velocities distribution (equation (36) and figure 3) 1.45(3)
Curvature distribution (equation (37) and figure 4) 1.29(41)
Interaction-strength distribution (equation (41) and figure 6) 1.21(39)

Now we investigate the velocity distributionPvel(v̂). Here the Yukawa conjecture
predicts a Gaussian distribution

Pvel(v̂) =
√

β̂

2π
exp

(
− β̂

2
v̂2

)
. (36)

Figure 3 shows the histogram of the experimental velocity distribution, together with the
prediction (36), using the same value forβ̂ as above. Again excellent agreement is found
between the theoretical prediction and the fit withβ̂ considered as a free parameter. The
small but significant deviations in the wings are caused by the already mentioned bouncing-
ball orbit. If the energy regions disturbed by the bouncing ball orbit are omitted from
the histogram, the shoulder on the high velocity side disappears. Similar deviations can be
found allready in our earlier work [7], as well as in a recent publication by Sieberet al [25].
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The quantity most thoroughly studied in level dynamics is the distributionPcurv(K̂) of
curvaturesK̂n = ẍn/〈xn〉2. Starting from the Yukawa conjecture (31), Gaspardet al [8]
showed that for GOE systemsPcurv(K̂) decreases asymptotically with|K̂|−3. Zakrzewski
and Delande [9] found from numerical studies thatPcurv(K̂) is described for allK̂ accurately
by

Pcurv(K̂) = β̂

2π

(
1 +

(
β̂K̂

π

)2)−3/2

. (37)

Recently it was proven by v Oppen [26], using supersymmetry techniques, that
equation (37) indeed is the correct curvature distribution. Figure 4 shows the corresponding
experimental result. The agreement between theory and experiment is again good. We
were not able to see deviations from equation (37) caused by the bouncing ball as they
are reported, for example, for the stadium billiard [27, 9] and the Sinai billiard [25]. These
deviations should become manifest mainly in the region of small curvatures where the
precision of our data was not sufficient to allow a reliable determination of the curvatures.

Now we come to the discussion of avoided crossings. Zakrzewski and Kuś [10] showed
that for the GOE the closest approach distancesc of neighboured eigenvalues at avoided
crossings should be Gaussian distributed,

Pac(c) = exp

(
−c2

π

)
. (38)

In a more recent work the authors published an improved expression forPac(c) [11] which
yielded, however, only marginal modifications; therefore, the much simpler expression (38)
is used here. Contrary to the distributions considered up to nowβ̂ does not enter at all
here. The distribution of closest approach distances is thus universal, as soon as the mean
eigenvalue spacing is normalized to one. The full curve in figure 5 again demonstrates the
good agreement between experiment and theory. The small hole in the lowest histogram
bar is caused by the experimental loss at closely neighboured eigenresonances. Again an
additional fit was performed by allowing for an additional factora in the exponent (and
a prefactor

√
a for normalization). The fit yieldeda = 1.1(1) thus confirming again the

theory quantitatively.
For a last test of the Yukawa conjecture we return to the dynamic-equation system (12),

(18), and (19). Near close encounters of neighbouring eigenvaluesxn−1 andxn the dynamics
can be approximated by a two-body collision, and equations (12) and (18) simplify to

ẍn = −ẍn−1 = 2
|fn,n−1|2

|xn − xn−1|3 . (39)

As positions and accelerations are known from the experiment, equation (39) can be used
to extract the nearest-neighbour interaction strengthsfn,n−1. For the distributionPis(f̂ ) of
the rescaled nearest-neighbour interaction strengths the Yukawa conjecture yields

Pis(f̂ ) = N

∫
exp

(
−β̂

f̂ 2

x2

)
P(x) dx (40)

whereN is a normalization constant andP(x) is the nearest-neighbour spacing distribution.
Inserting forP(x) the Wigner surmise

P(x) = π

2
x exp

(
−π

4
x2

)
the integration can be carried out and yields

Pis(f̂ ) = 2β̂f̂ K1

(√
πβ̂f̂

)
(41)
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whereK1(x) is a modified Bessel function.
In the experimental determination of thefn,n−1 we face a problem. For the two-body-

collision approximation to be justified the interaction with the other eigenvalues, especially
xn−2 and xn+1, has to be small. This suggests that we considerfn,n−1 values only if the
relation

|xn−1 − xn−2|−3 + |xn+1 − xn|−3 < q|xn − xn−1|−3

holds, whereq is a cut-off parameter which has to be properly adjusted. On one hand
q has to be small for the two-body-collision approximation to be justified, on the other
hand it has to be large for obtaining a representative ensemble of nearest-neigbour spacings.
Fortunately a variation ofq showed only little influence on the resulting distribution for
q values between 0.2 and 0.9. Figure 6 shows the histogram for the rescaled interaction
strengthsf̂n,n−1 for q = 0.5 together with the theoretical curve obtained from equation (41).
We would like to point especially at the exponential and definitely non-Gaussian decrease
of the distribution for largef̂n,n−1 values.

5. Summary

From figures 2–6 and table 1 we see that in all cases theβ̂ values obtained from the fit as well
as the width of the distribution of closest approach distances are in quantitative agreement
with the theoretical predictions. This shows that the Boltzmann ansatz can account perfectly
well for all found distributions, apart from small deviations due to non-generic features such
as bouncing-ball orbits. We would like to stress, that the only parameterβ̂, corresponding
to the reciprocal temperature of the eigenvalue gas, was determined independently from
the billiard geometry. So to speak the Boltzman ansatz has been tested in this work even
more profoundly than it would be possible in ordinary statistical mechanics, as positions,
velocities, acceleration etc of all particles are known at every moment which obviously is
out of reach for an ordinary gas.

Acknowledgments

We gratefully acknowledge fruitful discussions with B Eckhardt, Oldenburg at various stages
of the experimental work and the manuscript. The experiments profited much from the
existing software for data aquisition and analysis written by J Stein. The work was supported
by the Deutsche Forschungsgemeinschaft via the Sonderforschungsbereich ‘Nichtlineare
Dynamik’.

References

[1] Pechukas P 1983Phys. Rev. Lett.51 943
[2] Yukawa T 1985Phys. Rev. Lett.54 1883
[3] Hasegawa H and Robnik M 1993Europhys. Lett.23 171
[4] Yukawa T 1986Phys. Lett.116A 227
[5] Nakamura K and Lakshmanan M 1986Phys. Rev. Lett.57 1661
[6] Haake F 1991Quantum Signature of Chaos(Heidelberg: Springer)
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